近期,一支国际联合研究团队利用我国郭守敬望远镜(LAMOST)并结合国际上的盖亚(Gaia)和开普勒(Kepler)空间望远镜数据,得到了行星半径分布随宿主恒星年龄和金属丰度的演化规律。相关研究成果近日发表于《天文学杂志》。
据悉,20世纪90年代至今,人类发现的系外行星已超过5000颗。但迄今为止发现的最丰富的行星类型既不是气态巨行星也不是岩石行星,而是太阳系中没有的,大小介于地球和海王星之间的行星。
其中,比地球略大(约1~2倍地球半径)的称为“超级地球”,比海王星略小(约2~4倍地球半径)的称为“亚海王星”。这些行星的结构是怎样的呢?它们又是如何形成和演化的呢?
随着系外行星大量被发现,科研人员对其大样本的统计表明,行星出现率在行星大小为两个地球半径附近存在一个低谷,称为“行星半径谷”。这一发现为揭示行星的内部结构提供了关键的新线索和方向。
已有的研究认为,半径谷左侧的超级地球是放大版的地球,在更大的石质内核外包裹着稀薄大气,但右侧亚海王星的结构尚不清楚。
关于这个行星半径谷的形成机制,目前研究提出的理论模型一般可分为两类:演化模型和原初形成模型。
演化模型认为,亚海王星由石质内核和厚厚的气体包层组成。在外部恒星的辐射(称为光致蒸发)或者行星内核储存的热量(称为行星核热)的作用下,部分亚海王星的大气包层被剥离,仅留下了石质内核,也就是超级地球。
原初演化模型认为,半径谷是行星形成的自然结果,如一些研究认为其两侧分别对应着成分不同的两类行星:致密石质超级地球和富水/冰的亚海王星(如表面被数百到数千公里的海洋覆盖的“海洋行星”)。
国际联合研究团队采用估计年龄的运动学方法,即借助LAMOST和Gaia的观测数据对Kepler行星系统的宿主恒星的运动速度做精确刻画,并以此估计年龄,研究了系外行星“半径谷”随宿主恒星年龄和金属丰度的演化规律。
他们发现,随着年龄的增大,亚(类)海王星的平均半径逐渐减小,而超级地球的平均半径则几乎不变。这很可能意味着亚海王星年轻的时候包含足够厚的气体包层,随着年龄增大,行星逐渐冷却,包层收缩,半径减小。这一结果更加支持演化模型,表明(至少部分)亚海王星是气体矮巨星。
他们还发现行星“半径谷”在恒星形成早期已初步形成,并随着年龄增大而越来越明显。同时超级地球和亚海王星的数量比也越来越大,这也与演化理论的预期一致:部分亚海王星(气体矮巨星)被剥离大气,演变为超级地球。
从定量上看,行星半径在早期通过光致蒸发效应初步形成,后期在行星核热的作用下进一步加强。此外,研究发现亚海王星更倾向于出现在富铁和富镁/硅/钙的恒星周围,表明金属元素 (铁、镁、硅、钙等) 在亚海王星的形成中发挥了重要作用。
研究人员透露,这篇文章是"系外行星的空间分布和年龄演化"(英文简称为PAST,中文简称"穿越")系列的第三篇文章,更多"穿越"系列的后续工作正在进行和准备中。(作者:沈春蕾 )